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Abstract—Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying
factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables
with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process
of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the
model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision,
natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including
motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two
well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into
four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks
Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that
may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions
deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

Index Terms—Disentangled Representation Learning, Representation Learning, Computer Vision, Pattern Recognition.

✦

1 INTRODUCTION

When humans observe an object, we seek to understand
the various properties of this object (e.g., shape, size and
color etc.) with certain prior knowledge. However, existing
end-to-end black-box deep learning models take a shortcut
strategy through directly learning representations of the
object to fit the data distribution and discrimination crite-
ria [1], failing to extract the hidden attributes carried in
representations with human-like generalization ability. To
fill this gap, an important representation learning paradigm,
Disentangled Representation Learning (DRL) is proposed [2]
and has attracted an increasing number of attentions in the
research community.

DRL is a learning paradigm where machine learning
models are designed to obtain representations capable of
identifying and disentangling the underlying factors hid-
den in the observed data. DRL always benefits in learning
explainable representations of the observed data that carry
semantic meanings. Existing literature [2], [3] demonstrates
the potential of DRL in learning and understanding the
world as humans do, where the understanding towards
real-world observations can be reflected in disentangling
the semantics in the form of disjoint factors. The disentan-
glement in the feature space encourages the learned repre-
sentation to carry explainable semantics with independent
factors, showing great potential to improve various machine
learning tasks from the three aspects: i) Explainability: DRL
learns semantically meaningful and separate representa-
tions which are aligned with latent generative factors. ii)
Generalizability: DRL separates the representations that our
tasks are interested in from the original entangled input
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and thus has better generalization ability. iii) Controllability:
DRL achieves controllable generation by manipulating the
learned disentangled representations in latent space.

Then a natural question arises, What are disentangled
representations supposed to learn? The answer may lie in the
concept of disentangled representation proposed by Bengio
et al. [2], which refers to factor of variations in brief. As
shown by the example illustrated in Figure 1, Shape3D [4]
is a frequently used dataset in DRL with six distinct factors
of variation, i.e., object size, object shape, object color, wall
color, floor color and viewing angle. DRL aims at separating
these factors and encoding them into independent and dis-
tinct latent variables in the representation space. In this case,
the latent variables controlling object shape will change only
with the variation of object shape and be constant over other
factors. Analogously, it is the same for variables controlling
other factors including size, color etc.

Through both theoretical and empirical explorations,
DRL benefits in the following three perspectives: i) In-
variance: an element of the disentangled representations is
invariant to the change of external semantics [5], [6], [7],
[8], ii) Integrity: all the disentangled representations are
aligned with real semantics respectively and are capable of
generating the observed, undiscovered and even counter-
factual samples [9], [10], [11], [12], and iii) Generalization:
representations are intrinsic and robust instead of capturing
confounded or biased semantics, thus being able to general-
ize for downstream tasks [13], [14], [15].

Following the motivation and requirement of DRL, there
have been numerous works on DRL and its applications
over various tasks. Most typical methods for DRL are based
on generative models [6], [9], [16], [17], which initially show
great potential in learning explainable representations for
visual images. In addition, approaches based on causal
inference [14] and group theory [18] are widely adopted in
DRL as well. The core concept of designing DRL architecture
lies in encouraging the latent factors to learn disentangled
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Fig. 1. The scene of Shape3D [4], where the six rectangles in the gray
circle represent the six factors of variation in the Shape3D respectively.
DRL is expected to encode these distinct factors with independent latent
variables in the latent feature space.

representations while optimizing the inherent task objec-
tive, e.g., generation or discrimination objective. Given the
efficacy of DRL at capturing explainable, controllable and
robust representations, it has been widely used in many
fields such as computer vision [8], [19], [20], [21], [22],
natural language processing [23], [24], [25], recommender
systems [26], [27], [28], [29] and graph learning [29], [30] etc.,
boosting the performances of various downstream tasks.

Contributions. In this paper, we comprehensively re-
view DRL through summarizing the theories, methodolo-
gies, evaluations, applications and design schemes, to the
best of our knowledge, for the first time. In particular, we
present the definitions of DRL in Section 2 and comprehen-
sively review DRL approaches in Section 3. In Section 4,
we discuss popular evaluation metrics for DRL implementa-
tion. We discuss the applications of DRL for various down-
stream tasks in Section 5, followed by our insights in de-
signing proper DRL models for different tasks in Section 6.
Last but not least, we summarize several open questions and
future directions for DRL in Section 7. Existing work most
related to this paper is Liu et al.’s work [31], which only
focuses on imaging domain and applications in medical
imaging. In comparison, our work discusses DRL from
a general perspective, taking full coverage of definitions,
taxonomies, applications and design scheme.

2 DRL DEFINITIONS

Intuitive Definition. Bengio et al. [2] propose an intuitive
definition about disentangled representation:

Definition 1. Disentangled representation should separate the
distinct, independent and informative generative factors of varia-
tion in the data. Single latent variables are sensitive to changes
in single underlying generative factors, while being relatively
invariant to changes in other factors.

The definition also indicates that latent variables are
statistically independent. Following this intuitive definition,
early DRL methods can be traced back to independent
component analysis (ICA) and principal component anal-
ysis (PCA). Numerous Deep Neural Network (DNN) based
methods also follow this definition [5], [6], [7], [9], [32], [33],
[34], [35], [36], [37]. Most models and metrics hold the view
that generative factors and latent variables are statistically
independent.

Definition 1 is widely adopted in the literature, and is
followed by the majority of DRL approaches discussed in
Section 3.
Group Theory Definition. For a more rigorous mathemati-
cal definition, Higgins et al. [18] propose to define DRL from
the perspective of group theory, which is later adopted by
a series of works [38], [39], [40], [41]. We briefly review the
group theory-based definition as follows:

Definition 2. Consider a symmetry group G, world state space
W (i.e., ground truth factors which generate observations), data
space O, and representation space Z . Assume G can be decom-
posed as a direct productG = G1×G2×· · ·×Gn. Representation
Z is disentangled with respect to G if:

(i) There is an action of G on Z : G× Z → Z .
(ii) There exists a mapping from W to Z , i.e., f : W → Z

which is equivariant between the action of G on W and Z . This
condition can be formulated as follows:

g · f(w) = f(g · w),∀g ∈ G,∀w ∈W (1)

which can be illustrated as Figure. 2.
(iii) The action of G on Z is disentangled with respect to

the decomposition of G. In other words, there is a decomposition
Z = Z1 × . . .× Zn or Z = Z1 ⊕ . . .⊕ Zn such that each Zi is
affected only by Gi and invariant to Gj ,∀j ̸= i.

Definition 2 is mainly adopted by DRL approaches
originating from the perspective of group theory in VAE
(Section 3.2.2).
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Fig. 2. The illustration of
condition (ii).

Fig. 3. Swinging pendulum, light
and shadow, figure from [11].

Discussions. All the two definitions hold the assumption
that generative factors are naturally independent. However,
Suter et al. [14] propose to define DRL from the perspective
of structural causal model (SCM) [42], where they addition-
ally introduce a set of confounders which causally influence
the generative factors of observable data. Yang et al. [11] and
Shen et al. [43] further discard the independence assumption
via considering that there might be an underlying causal
structure which renders generative factors dependent. For
example, in Figure 3, the position of the light source and
the angle of the pendulum are both responsible for the
position and length of the shadow. Consequently, instead of
the independence assumption, they use SCM which charac-
terizes the causal relationship of generative factors as prior.
Nevertheless, this topic is not the focus of this paper and we
leave it as an open question for further explorations.

3 DRL TAXONOMY

In this section, we in detail present DRL approaches
through categorizing them into five groups: i.e., traditional
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Fig. 4. A categorization of DRL approaches.

statistical approaches, VAE based approaches, GAN based
approaches, hierarchical approaches and other methods.

3.1 Traditional Statistical Approaches
Though not being equipped with deep architectures,

several traditional statistical approaches have always been
effective in disentangling latent factors in the vector space,
among which Principal Component Analysis and Independent
Component Analysis are the most two representative algo-
rithms. Although these shallow models are not the focus of
this paper, we still provide brief descriptions for complete-
ness. Interested readers may refer to more statistics literature
for details.

3.1.1 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) [44] is a well-

established method for dimension reduction. PCA linearly
transforms the original data into linearly independent rep-
resentation in each dimension to extract the principle fea-
ture components of the given data. The idea of PCA to
obtain linearly independent representation resembles the
independence assumption of DRL. Though PCA can be ap-
plied to learn disentangled representation, there exist some
bottlenecks. For example, PCA is non-parametric so that
the optimization procedure can not be tailored for specific
tasks. Moreover, PCA is only effective for data samples
that are generated following Gaussian distribution. There
is some research (e.g., [45]) pointing out that the similarities
between VAE and PCA could possibly be one explanation
for the reason why VAE to some extent is capable of learning
disentangled representations.

3.1.2 Independent Component Analysis (ICA)
Independent Component Analysis (ICA) [46] looks for

latent factors or components that are statistically indepen-
dent and non-Gaussian in multivariate statistics. The un-
derlying assumption is that the observed signals X are
generated by the combinations of several statistically inde-
pendent non-Gaussian components S which are required
to be recovered. The independence assumption of ICA also
resembles the idea of DRL. For DRL, under the common
assumption that high dimension observations are generated
by a number of independent latent factors through certain

non-linear functions, we always consider non-linear ICA.
In non-linear ICA, the generation process can be written as
X = f(S | θ) + n, where f is a non-linear mixing function
and n is noise. The main bottleneck of non-linear ICA Lies
in its incapability of identifying disentangled solution with
entangled ones without any assumed conditions [47]. To
tackle this identifiability problem, Horan et al. [48] propose
a constraint of local isometry about the mapping from latent
space to observation space.

input Encoder
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Fig. 5. The general framework of variational auto-encoder (VAE).

3.2 Variational Auto-encoder (VAE) Based Approaches
Variational auto-encoder (VAE) [16] is a variant of the

auto-encoder, which adopts the idea of variational inference.
VAE is originally proposed as a deep generative proba-
bilistic model for image generation. Later researchers find
that VAE also has the potential ability to learn disentan-
gled representation on simple datasets (e.g., FreyFaces [16],
MNIST [49]). To obtain better disentanglement performance,
researchers design various extra regularizers to combine
with the original VAE loss function, resulting in the family
of VAE Based Approaches.

The general VAE model structure is shown in Figure 5.
The fundamental idea of VAE is to model data distributions
from the perspective of maximum likelihood using varia-
tional inference, i.e., to maximize log pθ(x). This objective
can be written as Eq.(2) in the following,

log pθ(x) = DKL

(
qϕ(z|x)∥pθ(z|x)

)
+ L(θ, ϕ;x, z), (2)

where q represents variational posterior distribution and
z represents the latent representation in hidden space. The
key point of Eq.(2) is leveraging variational posterior dis-
tribution qϕ(z|x) to approximate true posterior distribu-
tion pϕ(z|x), which is generally intractable in practice. The
detailed derivation of Eq.(2) can be found in the original
paper [16]. The first term of Eq.(2) is the KL divergence
between variational posterior distribution qϕ(z|x) and true
posterior distribution pθ(z|x), and the second term is de-
noted as the (variational) evidence lower bound (ELBO)
given that the KL divergence term is always non-negative.
In practice, we usually maximize the ELBO to provide a
tight lower bound for the original log(pθ(x)). The ELBO can
also be rewritten as Eq.(3) in the following,

L(θ, ϕ;x, z) =−DKL

(
qϕ(z|x)∥pθ(z)

)
+ Eqϕ(z|x)

[
log pθ(x|z)

]
, (3)

where the conditional logarithmic likelihood
Eqϕ(z|x)[log pθ(x|z)] is in charge of the reconstruction,
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and the KL divergence reflects the distance between
the variational posterior distribution qϕ(z|x) and the
prior distribution pθ(z). Generally, a standard Gaussian
distribution N(0, I) is chosen for pθ(z) so that the KL
term actually imposes independent constraint on the
representations learned though neural network [5], which
may be the reason that VAE has the potential ability of
disentanglement.

3.2.1 Vanilla VAE Based Methods

Although the essential design of VAE provides the po-
tential ability to disentangle, we observe that VAE shows
poor disentanglement capability on complex datasets such
as CelebA [50] and 3D Chairs [51] etc. To tackle this problem,
a large amount of improvement has been proposed through
adding implicit or explicit inductive bias to enhance disen-
tanglement ability, resorting to various regularizers (e.g., β-
VAE [6], DIP-VAE [35], and β-TCVAE [5] etc.). Specifically,
to strengthen the independence constraint of the variational
posterior distribution qϕ(z|x), β-VAE [6] introduces a β
penalty coefficient before the KL term in ELBO, where the
updated objective function is shown in Eq.(4).

L(θ, ϕ,x, z, β) = Eqϕ(z|x)
[
log pθ(x|z)

]
− βDKL

(
qϕ(z|x)∥pθ(z)

)
(4)

When β=1, β-VAE degenerates to the original VAE formula-
tion. The experimental results of β-VAE [6] show that larger
values of β encourage learning more disentangled represen-
tations while harming the performance of reconstruction.
Therefore, it is important to select an appropriate β to con-
trol the trade-off between reconstruction accuracy and the
quality of disentangling latent representations. To further
investigate this trade-off phenomenon, Chen et al. [5] gives
a more straightforward explanation from the perspective of
ELBO decomposition. They prove that the penalty tends to
increase dimension-wise independence of representation z
but decrease the ability of z in preserving the information
from input x.

However, it is practically intractable to obtain the opti-
mal β that balances the trade-off between reconstruction and
disentanglement. To handle this problem, Burgess et al. [34]
propose a simple modification, such that the quality of
disentanglement can be improved as much as possible with-
out losing too much information of the original data. They
regard β-VAE objective as an optimization problem from
the perspective of information bottleneck theory, whose
objective function is shown in Eq.(5) as follows,

max[I(Z;Y )− βI(X;Z)], (5)

where X represents the original input to be compressed,
Y represents the objective task, Z is the compressed repre-
sentations for X , and I(; ) stands for mutual information.
Recall the β-VAE framework, we can regard the first term in
Eq.(4), Eqϕ(z|x)[log pθ(x|z)] as I(Z;Y ), and approximately
treat the second term, DKL(qϕ(z|x)∥pθ(z)

)
as I(X;Z). To

be specific, qϕ(z|x) can be considered as the information bot-
tleneck of the reconstruction task maxEqϕ(z|x)[log pθ(x|z)].
DKL

(
qϕ(z|x)∥pθ(z)

)
can be seen as an upper bound over

the amount of information that qϕ(z|x) can extract and
preserve for original data x. The strategy is to gradually
increase the information capacity of the latent channel, and

the modified objective function is shown in Eq.(6) as follows,

L(θ, ϕ, C;x, z) =Eqϕ(z|x) log pθ(x|z)−
γ
∣∣DKL(qϕ(z|x)∥pθ(z))− C

∣∣, (6)

where γ and C are hyperparameters. During the training
process, C will gradually increase from 0 to a value large
enough to guarantee the expressiveness of latent repre-
sentations, or in other words, to guarantee satisfactory re-
construction quality when achieving good disentanglement
quality.

Furthermore, DIP-VAE [35] proposes an extra regularizer
to improve the ability to disentangle, with objective function
shown in Eq.(7) as follows,

max
θ,ϕ

Ex

[
Ez∼qϕ(z|x)

[
log pθ(x|z)

]
−DKL

(
qϕ(z|x)∥pθ(z)

)]
−λD

(
qϕ(z)∥pθ(z)

)
, (7)

where D(·∥·) represents distance function between qϕ(z)
and pθ(z). The authors point out that qϕ(z) should equal
to

∏
j qj (zj) to guarantee the disentanglement. Given the

assumption that pθ(z) follows the standard Gaussian dis-
tribution N(0, I), the objective imposes independence con-
straint on the variational posterior cumulative distribution
qϕ(z). In order to minimize the distance term, Kumar et al.
match the covariance of qϕ(z) and pθ(z) by decorrelating
the dimensions of z ∼ qϕ(z) given pθ(z) ∼ N(0, I), i.e.,
they force Eq.(8) to be close to the identity matrix,

Covqϕ(z)[z] = Ep(x) [Σϕ(x)] + Covp(x)
[
µϕ(x)

]
, (8)

where µϕ(x) and Σϕ(x) denote the prediction of
VAE model for posterior qϕ(z|x), i.e., qϕ(z|x) ∼
N(µϕ(x),Σϕ(x)). Finally, they propose two variants, DIP-
VAE-I and DIP-VAE-II, whose objective functions are shown
in Eq.(9) and Eq.(10) respectively as follows,

max
θ,ϕ

ELBO(θ, ϕ)− λod
∑
i ̸=j

[
Covp(x)[µϕ(x)]

]2
ij

− λd
∑
i

([
Covp(x)[µϕ(x)]

]
ii
− 1

)2

, (9)

max
θ,ϕ

ELBO(θ, ϕ)− λod
∑
i ̸=j

[
Covqϕ(z)[z]

]2
ij

− λd
∑
i

([
Covqϕ(z)[z]

]
ii
− 1

)2

, (10)

where λd and λod are hyperparameters. DIP-VAE-I regular-
izes Covp(x)

[
µϕ(x)

]
, while DIP-VAE-II directly regularizes

Covqϕ(z)[z].
Kim et al. [7] propose FactorVAE which imposes inde-

pendence constraint according to the definition of indepen-
dence, as shown in Eq.(11),

1

N

N∑
i=1

[
Eqϕ(z|x(i))

[
log pθ(x

(i)|z)
]
−DKL(qϕ(z|x(i))∥pθ

(
z)
)]

− γDKL
(
qϕ(z)∥q̄ϕ(z)

)
, (11)

where q̄ϕ(z) =
∏
j qϕ (zj) and x(i) represents i-th sam-

ple. DKL

(
qϕ(z)∥

∏
j qϕ(zj)

)
is called Total Correlation which

evaluates the degree of dimension-wise independence in z.
Chen et al. [5] propose to elaborately decompose

DKL

(
qϕ(z|x)||pθ(z)

)
into three terms, as is shown in

Eq.(12). i) The first term demonstrates the mutual informa-
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tion which can be rewritten as Iq(z;x), ii) the second term
denotes the total correlation and iii) the third term is the
dimension-wise KL divergence.

DKL(qϕ
(
z|x)∥pθ(z)

)
=DKL

(
qϕ(z,x)∥qϕ(z)pθ(x)

)︸ ︷︷ ︸
(i) Mutual Information

+DKL
(
qϕ(z)∥

∏
j

qϕ(zj)
)

︸ ︷︷ ︸
(ii) Total Correlation

+
∑
j

DKL
(
qϕ(zj)∥pθ(zj)

)
︸ ︷︷ ︸

(iii) Dimension-wise K L Divergence

. (12)

From Eq.(12), we can straightforwardly obtain the ex-
planation of the trade-off in β-VAE, i.e., higher β tends
to decrease Iq(z;x) which is related to the reconstruction
quality, while increasing the independence in qϕ(z) which
is related to disentanglement. As such, instead of penalizing
DKL

(
qϕ(z|x)||pθ(z)

)
as a whole with coefficient β, we can

penalize these three terms with three different coefficients
respectively, which is referred as β-TCVAE and is shown in
Eq.(13) as follows.

L =Eqϕ(z|x)pθ(x)
[
log pθ(x|z)

]
− αIq(z;x)

− βDKL
(
qϕ(z)∥

∏
j

qϕ(zj)
)
− γ

∑
j

DKL
(
qϕ(zj)∥pθ(zj)

)
.

(13)

To further distinguish between meaningful and noisy
factors of variation, Kim et al. [33] propose Relevance Fac-
tor VAE (RF-VAE) through introducing relevance indicator
variables that are endowed with the ability to identify all
meaningful factors of variation as well as the cardinality.
They separate the latent variables into two subsets, i.e., R
(relevant variables) and N (nuisance variables). Different
from the original FactorVAE, RF-VAE only focuses on the
relevant part when computing the total correlation. More-
over, the KL loss between posterior qϕ(z) and prior pθ(z)
is handled differently by penalizing less for relevant di-
mensions and more for nuisance dimensions, which follows
the intuition that the posterior of the nuisance part should
be independent of input sample x. When R and N are
known in advance, the objective function can be formulated
in Eq.(14)) as follows.

L =Eqϕ(z|x)
[
log pθ(x|z)

]
−

d∑
j=1

λjDKL
(
qϕ (zj |x) ∥pθ (zj)

)
− γDKL

(
qϕ

(
zR)

∣∣∣∣ ∏
j∈R

qϕ(zj)
))
,

where λj =

{
λmin if j ∈ R
λmax if j ∈ N

(λmin < λmax) ,

(14)

where λmin and λmax are predefined hyperparameters.
When R and N are not accessible, a learnable relevance
vector r is employed, where rj = 1 indicates that zj is a
relevant factor and rj = 0 indicates that zj is a nuisance
factor. The objective function is shown in Eq.(15) as follows,

L =Eqϕ(z|x)
[
log pθ(x|z)

]
−

d∑
j=1

λ (rj)DKL
(
qϕ (zj |x) ∥pθ (zj)

)
− γDKL

(
qϕ(r ◦ z)∥

d∏
j=1

qϕ(rj ◦ zj)
)
− η∥r∥1, (15)

where ◦ denotes element-wise product and λ(·) is a mono-
tone decreasing function with λ(0) = λmax > λmin = λ(1).
η∥r∥1 is the L1 regularizer which penalizes the situations
where too many dimensions are chosen as relevant, thus
encouraging minimal redundancy.

The aforementioned VAE based methods are designed
for continuous latent variables, failing to model the discrete
variables. Dupont et al. [32] propose a β-VAE based frame-
work, JointVAE, which is capable of disentangling both
continuous and discrete representations in an unsupervised
manner. They separate latent variables into continuous z
and discrete c, assuming the continuous and discrete latent
variables are conditionally independent. Therefore, the ob-
jective function Eq.(16) can be extended from the modified
β-VAE function Eq.(6), where Cz and Cc are gradually
increased during training.

L(θ, ϕ) =Eqϕ(z,c|x)
[
log pθ(x|z, c)

]
− γ

∣∣DKL(qϕ(z|x)∥p(z))− Cz
∣∣

− γ
∣∣DKL(qϕ(c|x)∥p(c))− Cc

∣∣. (16)

We conclude that all the above VAE based approaches
are unsupervised, with the common characteristic of adding
extra regularizer(s), e.g., DKL

(
qϕ(z)||p(z)

)
[35] and Total

Correlation [7], in addition to ELBO such that the dis-
entanglement ability can be guaranteed. The summary of
these unsupervised VAE based approaches is illustrated in
Table 1.

It is worth noting that we can also utilize supervised sig-
nals to obtain more disentangled and nicely aligned latent
representations if applicable. For example, DC-IGN [52] re-
stricts only one factor to be variant and others to be invariant
in each mini-batch. One dimension of latent representation
z is chosen as ztrain which is trained to explain all the
variances within the batch and through supervision, thus
aligns to the selected variant factor. For another example,
ML-VAE [36] divides samples into groups according to one
selected factor fs, where samples in each group share the
same value of fs. This setting is more applicable for some
applications such as image-to-image translation, where im-
ages in each group share the same label as well as the
same posterior of latent variables with respect to fs, which
depends on all the samples in the group. While as for other
factors except fs, the posterior may be dependent on each
individual sample.

To further conduct DRL on sequential data such as video
or audio, Li [53] et al. modify the original VAE model to
adapt sequential data. Considering the temporal nature of
sequences, they separate latent representation into time-
invariant and time-varying part. The probabilistic genera-
tive model is shown in Eq.(17) as follows,
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TABLE 1
The summary of VAE based approaches.

Method Regularizer Description

β-VAE −βDKL
(
qϕ(z|x)∥p(z)

) β controls the trade-off between reconstruction fidelity
and the quality of disentanglement in latent representa-
tions.

Understanding
disentangling in

β-vae
−γ

∣∣DKL(qϕ(z|x)∥p(z))− C
∣∣ The quality of disentanglement can be improved as much

as possible without losing too much information from
original data by linearly increasing C during training.

DIP-VAE −λDKL
(
qϕ(z)∥p(z)

) Enhance disentanglement by minimizing the distance
between qϕ(z) and p(z). In practice, we can match the
moments between qϕ(z) and p(z).

FactorVAE −γDKL
(
qϕ(z)∥

∏
j qϕ(zj)

) Directly impose independence constraint on qϕ(z) in the
form of total correlation.

β-TCVAE −αIq(z;x)− βDKL
(
q(z)∥

∏
j q(zj)

)
−

γ
∑
j DKL

(
q(zj)∥p(zj)

) Decompose DKL
(
q(z|x)||p(z)

)
into three terms: i) mu-

tual information, ii) total correlation, iii) dimension-wise
KL divergence and then penalize them respectively.

JointVAE −γ
∣∣DKL(qϕ(z|x)∥p(z))− Cz

∣∣−
γ
∣∣DKL(qϕ(c|x)∥p(c))− Cc

∣∣ Separate latent variables into continuous z and discrete
c, then modify the objective function of β-VAE to capture
discrete generative factors.

RF-VAE −
∑d
j=1 λ (rj)DKL

(
q(zj |x)∥p(zj)

)
−

γDKL
(
q(r ◦ z)∥

∏d
j=1 q(rj ◦ zj)

)
− η∥r∥1

Introduce relevance indicator variables r by only fo-
cusing on relevant part when computing the total cor-
relation, penalize DKL

(
q(zj |x)||p(zj)

)
less for relevant

dimensions and more for nuisance (noisy) dimensions.

pθ (x1:T, z1:T, f) = pθ(f)

T∏
t=1

pθ (zt | z<t) pθ (xt | zt, f) . (17)

The inference model is shown in Eq.(18) for full q and
Eq.(19) for factorized q,

qϕ (z1:T, f | x1:T) = qϕ (f | x1:T) qϕ (z1:T | f ,x1:T) , (18)

qϕ (z1:T, f | x1:T) = qϕ (f | x1:T)

T∏
t=1

qϕ (zt | xt) , (19)

where x1:T = (x1,x2, . . . ,xT) denote a high dimensional
sequence, f is a latent variable which can model global
aspects of the whole sequence which are time-invariant and
zi represent the time-varying feature of the i-th frame. The
training procedure conforms to the VAE algorithm [16] with
the objective of maximizing ELBO in Eq.(20) as follows,

L(θ, ϕ,x, z, f) =Eqϕ(z1:T,f |x1:T)

[
log pθ(x1:T|z1:T, f)

]
−DKL

(
qϕ(z1:T, f |x1:T)∥pθ(z1:T, f)

)
(20)

3.2.2 Group Theory Based VAE Methods

Besides the intuitive definition from Definition 1, Hig-
gins et al. [18] propose a mathematically rigorous group
theory definition of DRL in Definition 2, which is followed
by a series of works [38], [39], [40], [41] on group-based DRL.

Quessard et al. [39] propose a method for learning disen-
tangled representations of dynamical environments (which
returns observations) from the trajectories of transforma-
tions (which act on the environment). They consider the
data space O and latent representation space V , where a
dataset of trajectories (o0, g0, o1, g1, ...) with oi denoting the
observation of data and gi ∈ G denoting the transformation

that transforms oi to oi+1. They map G to a group of ma-
trices belonging to the special orthogonal group SO(n), i.e.,
mapping gi to an element of general linear group GL(V ),
which is shown in Eq.(22)). Ri,j denotes the rotation in the
(i, j) plane. For instance, in the case of 3-dimensional space:

Ri,i (θi,j) =

 cos θi,j 0 sin θi,j
0 1 0

− sin θi,j 0 cos θi,j

 . (21)

In the training procedure, they first randomly select an
observation oi in the trajectories, then generate a series of re-
constructions {ôk}k=i+1,...,i+m through Eq.(23), where fϕ is
the encoder mapping the observations to the n-dimensional
latent space V and dψ is the decoder. The first objective
is to minimize the reconstruction loss Lrec(ϕ, ψ, θ) between
the true observations {ok}k=i+1,...,i+m generated by the
transformations in the environment and the reconstructed
observations {ôk}k=i+1,...,i+m generated by the transforma-
tions in the latent space. Furthermore, to enforce disentan-
glement, they propose another loss function Lent(θ) which
penalizes the number of rotations that a transformation
ga(θ

a
i,j) involves, which is shown in Eq.(24). Lower Lent

indicates that ga involves fewer rotations and thus ga acts
on fewer dimensions, which means better disentanglement.

g (θ1,2, θ1,3..., θ1,n, θ2,3..., θ2,n, ......θn−1,n) =

n−1∏
i=1

n∏
j=i+1

Ri,j (θi,j) ,

(22)

ôi+m(ϕ, ψ, θ) = dψ
(
gi+m(θ) · gi+m−1(θ) . . . .gi+1(θ) · fϕ(oi)

)
,

(23)

Lent(θ) =
∑
a

∑
(i,j)̸=(α,β)

∣∣θai,j∣∣2 with θaα,β = max
i,j

(∣∣θai,j∣∣) .
(24)
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Different from environment-based methods [38], [39]
which leverage environment to provide world states, Yang
et al. [40] propose a theoretical framework to make Defini-
tion 2 feasible in the setting of unsupervised DRL without
relying on the environment. They propose three sufficient
conditions in the framework, namely model constraint, data
constraint and group structure constraint, together with a
specific implementation of the framework based on the
existing VAE-based models through integrating additional
loss. The authors assume that G is a direct product of
m rings of integers modulo n, i.e., G = (Z/nZ)m =
Z/nZ × Z/nZ × · · · × Z/nZ, where n denotes the number
of possible values for a factor and m denotes the number
of all factors. They assume Z has the same elements as G
and further assume the group action of G on Z is element-
wise addition, i.e., g · z = g + z,∀z ∈ Z, g ∈ G. In order
not to involve the group action on world state space W
for the unsupervised setting, they construct the permutation
group Φ, then use the group action of Φ on the data space
O to replace the group action of G on W , which can be
formulated in Eq.(25) as follows,

f(g · w) = h
(
φg · b(w)

)
= h (φg · o) , ∀w ∈W, g ∈ G, (25)

where h represents the mapping from O to Z and b repre-
sents the mapping from W to O.

Here the Φ satisfying Eq.(25) exists if and only if:
(i) Φ is isomorphic to G; (ii) For each generator of di-
mension i of G, i.e., gi, there exists a generator of Φ,
i.e., φi, such that φi · b(w) = b (gi · w) ,∀w ∈ W ; (iii)
φg · b(w) = h−1

(
g · f(w)

)
,∀w ∈ W,φg ∈ Φ, where φg

is the corresponding element of g under the isomorphism.
Condition (i) and (ii) are respectively referred as group
structure constraint and data constraint. Condition (iii) is
a model constraint which further guarantees that group Φ
can be achieved by encoder, decoder and the group action of
G on Z . When these three conditions are satisfied, it can be
derived that Z is disentangled with respect to G. However,
given that condition (ii) directly involves the world states, a
learning method named GROUPIFIED VAE utilizing a nec-
essary condition to substitute (ii) is proposed to satisfy the
unsupervised setting. Thus under the architecture of VAE,
the model constraint in condition (iii) can be formulated by
Eq.(26) as follows,

φg · o = h−1(g · h(o)) ≜ d
(
g · h(o)

)
, ∀o ∈ O, g ∈ G, (26)

where h is the encoder and d is the decoder. Moreover, the
data constraint can be satisfied to some extent by VAE based
models for the unsupervised setting because of the intuition
that VAE based models can generate the data from statistical
independent latent variables which are similar to generators
of Φ. To satisfy the group structure constraint, GROUPIFIED
VAE proposes Abel Loss and Order Loss to guarantee that ϕ
is isomorphic to G, which are formulated in Eq.(27) and
Eq.(28) respectively as follows,

La =
∑
o∈O

∑
(i,j)

∥∥φi · (φj · o)− φj · (φi · o)
∥∥, (27)

Lo =
∑
o∈O

∑
1≤i≤m

( ∥∥φi · (φn−1
i · o

)
− o

∥∥+
∥∥φn−1

i · (φi · o)− o
∥∥ ),
(28)

where φ is the generator of Φ.

Beyond learning the homomorphism from a group to
group action, Wang et al. [41] propose Iterative Partition-
based Invariant Risk Minimization (IP-IRM), an iterative
algorithm based on the self-supervised learning fashion, to
specifically learn a mapping between observation space I
and feature space X , i.e., a disentangled feature extractor
ϕ such that x = ϕ(I) under the group-theoretical disen-
tanglement conditions. They first argue that most existing
self-supervised learning approaches only disentangle the
augmentation related features, thus failing to modularize
the global semantics. In contrast, IP-IRM is able to ground
the abstract semantics and the group actions successfully.
Specifically, IP-IRM partitions the training data into disjoint
subsets with a partition matrix P, and defines a pretext task
with contrastive loss L(ϕ, θ = 1, k,P) on the samples in
the k-th subset, where θ is a constant parameter. At each
iteration, it finds a new partition P∗ through maximizing the
variance across the group orbits by Eq.(29), which reveals an
entangled group element gi.

P∗ = argmax
P

∑
k

[
L(ϕ, θ = 1, k,P)

+ λ2 ∥∇θ=1L(ϕ, θ = 1, k,P)∥2
]
. (29)

Then the Invariant Risk Minimization (IRM) [54] ap-
proach is adopted to update ϕ by Eq.(30), which disentan-
gles the representation w.r.t gi. It sets P = {P} at beginning
and update P ← P ∪P∗ each time.

min
ϕ

∑
P∈P

∑
k

[
L(ϕ, θ = 1, k,P) + λ1 ∥∇θ=1L(ϕ, θ = 1, k,P)∥2

]
(30)

It is theoretically proved that iterating the above two
steps eventually converges to a fully disentangled represen-
tation w.r.t.

∏m
i=1 gi. IP-IRM is devised to delay the group

action learning to downstream tasks on demand so that
it learns a disentangled representation with an inference
process, which provides wide feasibility and availability on
large-scale tasks.

Moreover, Zhu et al. [55] propose an unsupervised DRL
framework, named Commutative Lie Group VAE. They in-
troduce a matrix Lie groupG and corresponding Lie algebra
g which satisfies Eq.(31),

g(t) = exp(B(t)), g ∈ G,B ∈ g,

B(t) = t1B1 + t2B2 + . . .+ tmBm, ∀ti ∈ R, (31)

where exp(·) denotes the matrix exponential map and
{Bi}mi=1 is a basis of the Lie algebra. In this case, every
sample have a group representation z and can also be
identified by coordinate t in the Lie algebra. The objective
function is written in Eq.(32) as follows,
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log p(x) ≥Lbottleneck (x, z, t)

=Eq(z|x)q(t|z) log p(x|z)p(z|t)
− Eq(z|x)DKL

(
q(t|z)||p(t)

)
− Eq(z|x) log q(z|x),

(32)

where q(z|x) is implemented as a deterministic encoder,
while q(t|z) is implemented as a stochastic encoder. p(z|t) is
implemented through z = g(t), and p(x|z) is implemented
as an image decoder. The first and second term can be
regarded as reconstruction loss on data space and represen-
tation space respectively. The third term is the conditional
entropy, which is constant. Moreover, a one-parameter de-
composition constraint and a Hessian penalty constraint
on {Bi}mi=1 are proposed to encourage disentanglement as
well.

3.2.3 Causal VAE Based Methods

Based on the statement from Suter et al. [14], Reddy et
al. [56] propose two essential properties that a generative
latent variable models (e.g., VAE) should fulfill to achieve
causal disentanglement. Consider a latent variable model
M(e, g, pX), where e denotes an encoder, g denotes a gen-
erator and px denotes a data distribution. Let Gi denote the
i-th generative factor andC be the confounders in the causal
learning literature [57]. The two properties with respect to
encoder and generator are presented in the following:

Property 1. Encoder e can learn the mapping from Gi
to unique ZI , where I is a set of indices and ZI is a set of
latent dimensions indexed by I . The unique ZI means that
ZI ∩ ZJ = ∅, ∀ I ̸= J, |I|, |J | ≥ 0. In this case, we assert
that Z is unconfounded with respect to C , i.e., there is no
spurious correlation between ZI and ZJ , ∀ I ̸= J .

Property 2. For a generative process by g , only ZI can
influence the aspects of generated output controlled by Gi,
while the others, denoted as ZI− , can not.

Mainstreams of DRL Methods

◼ Causal-based method: CausalVAE

◼ Discard the independence assumption. There might be an underlying 

causal structure which renders generative factors dependent.

◼ Introduce structural causal model (SCM) as prior.

33

x1 x2

y

illumination position

shadow length and position

pendulum angle

Yang et al. "CausalVAE: Disentangled representation learning via neural structural causal models." CVPR'21

Fig. 6. The position of the illumination source and the angle of the
pendulum are causes of the position and the length of the shadow.

Since Locatello et al. [58] challenge the common assump-
tion in the vanilla VAE based DRL approaches that latent
variables need to be independent, some following works
also attempt to discard the independence assumptions. Yang
et al. [11] propose CausalVAE which first introduces struc-
tural causal model (SCM) as prior. CausalVAE considers the
relationships between the factors of variation in the data
from the perspective of causality, describing these relation-
ships with SCM, as is illustrated in Figure. 6. CausalVAE
employs an encoder to map the input x and supervision
signal u associated with the true causal concepts to an
independent exogenous variable ϵ whose prior distribution
follows a standard Multivariate Gaussian N (0, I). This en-
coding process is illustrated in Eq. (33),

ϵ = h(x,u) + ζ, (33)

where h is the encoder and ζ is a noise. Then a Causal Layer is
designed to transforms ϵ to causal representation z through
the linear structural equation in Eq.(34),

z = A⊤z+ ϵ =
(
I−A⊤

)−1

ϵ, (34)

where A is the learnable adjacency matrix of the causal
directed acyclic graph (DAG). Before being fed into the
decoder, z is passed through a Mask Layer to reconstruct
itself, as is illustrated in Eq.(35), for the i-th latent dimension
of z, zi,

zi = gi (Ai ◦ z; ηi) + ϵi, (35)

where ◦ represents element-wise product and gi is a mild
nonlinear function with the learnable parameter ηi. In this
mask stage, causal intervention is conducted in the form of
“do operation” by setting zi to a fixed value. After the Mask
Layer, z is passed through the decoder to reconstruct the
observation x, i.e., x̂ = d(z) + ξ, where ξ is also a noise.

Bengio et al. [59] point out adaptation speed can evaluate
how well a model fits the underlying causal structure from
the view of causal inference, and exploit a meta-learning
objective to learn disentangled and structured causal repre-
sentations given unknown mixtures of causal variables.

Different from the supervised scheme of CausalVAE,
Shen et al. [43] propose a weakly supervised framework
named DEAR, which also introduces SCM as prior. First,
the causal representation z is obtained by an encoder E (or
obtained by sampling from prior pz), taking sample x as
input, i.e., z = E(x). Second, the exogenous variable ϵ is
computed based on the general non-linear SCM proposed
by Yu et al. [60] in which the previously calculated z is
employed to define Fβ(ϵ), as is shown in Eq.(36),

[
z = f1

(
(I−A⊤)−1f2(ϵ)

)]
:= Fβ(ϵ), (36)

where f1 and f2 are element-wise transformations, which
are usually non-linear. A is the same learnable adjacency
matrix in Eq.(34) and Eq.(35). β denotes the parameters
of f1, f2 and A. When f1 is invertible, Eq.(36) will be
equivalent to Eq.(37) in the following:

f−1
1 (z) = A⊤f−1

1 (z) + f2(ϵ). (37)

Third, we can carry out ”do operation” on z by setting zi
to a fixed value and then reconstruct z using ancestral sam-
pling by performing Eq.(37) iteratively. Finally, z is passed
through a decoder for reconstruction. To guarantee disen-
tanglement, a weakly supervised loss L = Ex,y [Ls(E;x,y)]
is applied, only needing a small piece of labeled data,
with Ls =

∑m
i=1 CrossEntropy

(
Ē(xi), yi

)
when label yi is

binarized or Ls =
∑m
i=1

(
Ē(xi) − yi

)2
when yi is continu-

ous. Note that Ē is the deterministic part of E(x). When
using the VAE structure, Ē(x) = m(x) is derived with
E(x) ∼ N

(
m(x), Σ(x)

)
, where m(x) and Σ(x) are the

mean and variance output by the encoder, respectively.
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3.3 Generative Adversarial Networks (GAN) Based Ap-
proaches

GAN (Generative Adversarial Nets) [17], as another
important generative model proposed by Goodfellow et al.,
has drawn a lot of attentions from researchers. Instead of
adopting conventional Bayesian statistical methods, GAN
directly sample latent representations z from a prior dis-
tribution p(z). Specifically, GAN has a generative network
(generator) G and a discriminative network (discriminator)
D where the generator G simulates a complex unknown
generative system which transforms latent representation z
to a generated image, while the discriminator D receives an
image (real or generated by G) as input and then outputs
the probability of the input image being real. In the training
process, the goal of generator G is to generate images which
can deceive discriminator D into believing the generated
images are real. Meanwhile, the goal of discriminator D is
to distinguish the images generated by generator G from the
real ones. Thus, generator G and discriminator D constitute
a dynamic adversarial minimax game. Ideally, generator G
can finally generate an image that looks like a real one so
that discriminator D fails to determine whether the image
generated by generator G is real or not. The objective
function is shown as Eq.(38),

min
G

max
D

V (D,G) = Ex∼Pdata

[
logD(x)

]
+ Ez∼p(z)

[
log

(
1−D

(
G(z)

))]
, (38)

where Pdata represents the real dataset and p(z) represents
the prior distribution of the latent representation z. Based on
GAN, researchers has also proposed a number of methods
for DRL.

InfoGAN [9] is one of the earliest works using the
GAN paradigm to conduct DRL. The generator takes two
latent variables as input, where one is the incompressible
noise z, and the other is the target latent variable c which
captures the latent generative factors. To encourage the
disentanglement in c, InfoGAN designs an extra variational
regularization of mutual information, i.e., I(c;G(z, c)) con-
trolled by hyperparameter λ, such that the adversarial loss
of InfoGAN is written in Eq. (39) as follows,

min
G

max
D

VI(D,G) = V
′
(D,G)− λI

(
c;G(z, c)

)
, (39)

where V
′
(D,G) is defined in Eq.(40), taking c into account.

V ′(D,G) = Ex∼Pdata

[
logD(x)

]
+ Ez∼p(z)

[
log

(
1−D

(
G(z, c)

))]
. (40)

However, it is intractable to directly optimize
I
(
c;G(z, c)

)
because of the inaccessibility of posterior

p(c|x). Therefore, InfoGAN derives a lower bound of
I
(
c;G(z, c)

)
with variational inference in Eq.(41),

I
(
c;G(z, c)

)
= H(c)−H

(
c | G(z, c)

)
= Ex∼G(z,c)

[
Ec′∼p(c|x)

[
log p

(
c′ | x

)] ]
+H(c)

= Ex∼G(z,c)

[
DKL

(
p(· | x)∥q(· | x)

)︸ ︷︷ ︸
≥0

+ Ec′∼p(c|x)
[
log q

(
c′ | x

)] ]
+H(c)

≥ Ex∼G(z,c)

[
Ec′∼p(c|x)

[
log q

(
c′ | x

)] ]
+H(c)

= Ec∼p(c),x∼G(z,c)[log q(c | x)] +H(c), (41)

where H(.) denotes the entropy of the random variable and
q(c|x) is the auxiliary posterior distribution approximating
the true posterior p(c|x). Actually, q is implemented as
a neural network. The overall framework of InfoGAN is
shown in Figure. 7.

input
𝒄𝒄

𝒛𝒛
Generator

G
generated

𝐱𝐱
Discriminator

D
real image 
probability

Classifier 
𝒒𝒒

�𝒄𝒄

share convolutional layers

maximize q(𝒄𝒄|𝒙𝒙)

predict the input latent 
representation 𝒄𝒄

Fig. 7. The overall framework of InfoGAN.

Nevertheless, the performance of InfoGAN for disen-
tanglement is constantly reported to be lower than VAE-
based models. To enhance disentanglement, Jeon et al. [61]
propose IB-GAN which compresses the representation by
adding a constraint on the maximization of mutual infor-
mation between latent representation z and G(z), which is
actually a kind of application for information bottleneck.
The hypothesis behind IB-GAN is that the compressed
representations usually tend to be more disentangled.

Lin et al. [62] propose InfoGAN-CR, which is a self-
supervised variant of InfoGAN with contrastive regularizer.
They generate multiple images by keeping one dimension
of the latent representation, i.e., ci, fixed and randomly
sampling others, i.e., cj where j ̸= i. Then a classifier
which takes these images as input will be trained to deter-
mine which dimension is fixed. The contrastive regularizer
encourages distinctness across different dimensions in the
latent representation, thus being capable of promoting dis-
entanglement.

Zhu et al. [63] propose PS-SC GAN based on InfoGAN
which employs a Spatial Constriction (SC) design to obtain
the focused areas of each latent dimension and utilizes
Perceptual Simplicity (PS) design to encourage the factors
of variation captured by latent representations to be simpler
and purer. The Spatial Constriction design is implemented
as a spatial mask with constricted modification. Moreover,
PS-SC GAN imposes a perturbation ϵ on a certain latent
dimension ci (i.e., c′i = ci + ϵ) and then computes the
reconstruction loss between c and ĉ with ĉ = q

(
G(c, z)

)
,

as well as the reconstruction loss between c′ and ĉ′ with
ĉ′ = q

(
G(c′, z)

)
, where q is a classifier same in InfoGAN.
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The principle of Perceptual Simplicity is to punish more on
the reconstruction errors for the perturbed dimensions and
give more tolerance for the misalignment of the remaining
dimensions.

Wei et al. [64] propose an orthogonal Jacobian regular-
ization (OroJaR) to enforce disentanglement for generative
models. They employ the Jacobian matrix of the output with
respect to the input (i.e., latent variables for representation)
to measure the output changes caused by the variations in
the input. Assuming that the output changes caused by dif-
ferent dimensions of latent representations are independent
with each other, then the Jacobian vectors are expected to be
orthogonal with each other, i.e., minimizing Eq. (42),

LJacob(G) =

D∑
d=1

m∑
i=1

∑
j ̸=i

∣∣∣∣∣
[
∂Gd
∂zi

]T
∂Gd
∂zj

∣∣∣∣∣
2

, (42)

where Gd denotes the d-th layer of the generative models
and zi denotes i-th dimension in the latent representation.

On the other hand, we can also introduce supervision
to further facilitate disentanglement. For instance, Tran et
al. [65] propose DR-GAN which uses the class labels of input
images as supervision signals, where the manually preset
one-hot latent representation c is forced to align with the
class label during the training stage.

Xiao et al. [66] propose DNA-GAN, a supervised model
whose training procedure similar to gene swap. In concrete,
DR-GAN takes a pair of multi-labeled images Ia and Ib with
different labels as the input of the encoder. After obtaining
the original representations a and b of Ia and Ib through
an encoder, the swapped representations a′ and b′ are con-
structed by swapping the value of a particular dimension
in the attribute-relevant part of the original representations.
After decoding, the reconstruction and the adversarial loss
are applied to ensure that each dimension of attribute-
relevant representations can align with the corresponding
labels.The architecture is shown in Figure 8

Fig. 8. The architecture of DNA-GAN, figure from [66].

The powerful representations obtained from GAN based
approaches also promote research on cross-domain DRL.
Liu et al. [67] study the challenge of image translation
through learning a joint distribution from two marginal
distributions of different domains. They propose UNIT, a
model adopting the assumption that a shared latent space
can be obtained via mapping images from two domains to
a common space. Directly reconstructing images or trans-

lating images to the other domains based on the shared
latent space can be accomplished in an unsupervised man-
ner, with a design implying the idea of cycle-consistency
constraint [68]. The extension of UNIT, MUNIT [69] is
explicitly inspired by the idea of disentanglement, following
the assumption that the representation space can be decom-
posed into content space and style space, capturing domain-
invariant and domain-specific properties respectively. MU-
NIT introduces multimodal and diverse translation through
combining a content representation with a style representa-
tion sampled from the style space of an alternative target
domain. Specifically, MUNIT obtains content representation
and style representation of each domain, reconstructing the
samples through two pairs of auto-encoders for within-
domain generation. Afterwards, the content encoders from
two different domains will be swapped to generate trans-
lated samples for cross-domain translation, ensuring that
the translated images are indistinguishable from real images
by the discriminator in the target domain with adversarial
objectives.

3.4 Hierarchical Approaches

In practice, many generative processes naturally involve
hierarchical structures [70] where the factors of variation
have different levels of semantic abstraction, either depen-
dent or independent across levels. For example, the fac-
tor controlling gender has higher level of abstraction than
the independent factor controlling eye-shadow in CelebA
dataset [50], while there exist dependencies between factors
controlling shape and phase in Spaceshapes dataset [70],
e.g., the dimension of “phase” is active only when the
object shape equals to “moon”. To capture these hierarchical
structures, a series of works have been proposed to achieve
hierarchical disentanglement.

Li et al. [71] propose a VAE-based model which learns
hierarchical disentangled representations through formulat-
ing the hierarchical generative probability model in Eq. (43),

p(x, z) = p (x | z1, z2, . . . , zL)
L∏
l=1

p (zl) , (43)

where zl denotes the latent representation of the l-th level
abstraction, and a larger value of l indicates a higher level
of abstraction. The authors estimate the level of abstraction
with the network depth, i.e., deeper network layer is respon-
sible for outputting representations with higher abstraction
level. It is worth noting that Eq.(43) assumes that there is
no dependency among latent representations with different
abstraction levels. In other words, each latent representation
tends to capture the factors in one single abstraction level,
which will not be covered in other levels. The corresponding
inference model is formulated in Eq.(44) as follows,

q (z1, z2, . . . , zL | x) =
L∏
l=1

q
(
zl | hl(x)

)
, (44)

where hl(x) represents the abstraction of l-th level. In the
training stage, the authors design a progressive strategy of
learning representations from high to low abstraction levels
with modified ELBO objectives. The hierarchical progressive
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learning is shown in Figure 9, where hi and gi are a set of
encoders and decoders at different abstraction levels.

Fig. 9. The architecture of DNA-GAN, figure from [71].

Tong et al. [72] propose to learn a set of hierarchical
disentangled representations z =

{
zil
}cl
i=1

, where zil is the
latent variable of the l-th layer in the hierarchical structure
and cl is the total number of latent variables of the l-th layer.
To ensure disentanglement at every hierarchical level, they
design a loss function shown in Eq.(45),

Ldisentangle =
∑
l

2

cl (cl − 1)

cl∑
i ̸=j

dCov2
(
zil, z

j
l

)
, (45)

where dCov2(·, ·) denotes the distance covariance.
Singh et al. [73] propose an unsupervised hierarchical

disentanglement framework FineGAN for fine-grained ob-
ject generation. They design three latent representations for
different hierarchical levels, i.e., background code b, parent
code p and child code c, which represent background, object
shape and object appearance respectively. Background is
the lowest level, followed by shape and appearance. In
the generation process, FineGAN first generates a realistic
background image by taking b and noise z as input. Then it
generates the shape and stitches it on top of the background
image through taking p and noise z as input. Finally, by
taking c as input conditioned on p, the model fills in
the shape (parent) outline with appearance (child) details.
The authors further employ information theory (similar
to InfoGAN) to disentangle the parent (shape) and child
(appearance), and use an adversarial loss together with
an auxiliary background classification loss to constrain the
background generation.

Li et al. [74] propose a hierarchical disentanglement
framework for image-to-image translation. They manually
organize the labels into a hierarchical tree structure from
root to leaves and from high to low level of abstraction, for
example, tags (e.g., glasses), attributes (e.g., with or without),
styles (e.g., myopic glasses, sunglasses). It is worth noting
that the tree hierarchical structure indicates that the child
nodes depend on their parents. The authors train a transla-
tor module to deal with tags and train an encoder to extract
style features.

Ross et al. [70] propose a hierarchical disentanglement
framework, which assumes that a group of dimensions may
only be active in some cases. Specifically, they organize
generative factors as a hierarchical structure (e.g., tree) such
that whether a child node can be active depends on the
value of its parent node. Take the Spaceshapes dataset as
an example, the dimension representing phase will only be
active when the value of its parent shape equals to “moon”.

They design an algorithm named MIMOSA to learn the
hierarchical structure based on which an autoencoder is
trained for hierarchical disentanglement.

Hsu et al. [75] propose a hierarchical conditional VAE-
based framework with two levels of hierarchical latent
variables: i)categorical variable and ii)multivariate Gaussian
variable. The first level represents attribute groups (clusters)
and the second level characterizes specific attribute config-
urations conditioned on the first level, with the distribution
of these two latent variables following a Gaussian mixture
model (GMM).

3.5 Other Methods

Pretrained Generator as Prior. Most encoder-decoder
based methods such as VAE train the encoder and decoder
(or generator) simultaneously. However, recent works [76],
[77], [78] have shown semantically meaningful variations
when traversing along different directions in the latent space
of pretrained generative models. The phenomenon indi-
cates that there exist certain properties of disentanglement
in the latent space of the pretrained generator. Based on
this, Ren et al. [79] claim that training the encoder and
generator simultaneously may not be the best choice and
then propose a framework, DisCo, which optimizes the
encoder with the pretrained generator fixed. They discover
the traversal directions of the fixed generator as factors for
disentanglement and further encode traversed images into
the variation space, where contrastive learning is utilized to
enforce disentanglement.

Distilling Unknown Factors with Weak Supervision.
Most unsupervised DRL methods hold the assumption that
the target dataset is semantically clear and well-structured
to be disentangled into explanatory, independent and re-
coverable generative factors [80]. However, in some cases
there exist intractable factors which are unclear or difficult
for labeling, where these factors are usually regarded as
noises unrelated to the target task. Xiang et al. [80] propose
a weakly-supervised DRL framework, DisUnknown, with
the setting of N − 1 factors labeled and 1 factor unknown
out of totally N factors. As such, all the intractable fac-
tors or task-irrelevant factors can be covered in the single
unknown factor. The DisUnknown model is a two-stage
method including i) unknown factor distillation and ii)
multi-conditional generation, where the first stage extracts
the unknown factor by adversarial training and the second
stage embeds all labeled factors for reconstruction. They use
a set of discriminative classifiers which predict the probabil-
ity distribution of factor labels to enforce disentanglement,
similar to the idea of InfoGAN [9].

Incorporating Supervisions with Few Labels. Locatello
et al. [58] claim that “pure unsupervised DRL is theoretically
impossible without inductive bias on methods and data
sets”. Given that the amount of supervisions are quite lim-
ited in practice, they point out that using a few labeled and
even imprecise data for training can be sufficient and ben-
eficial both in terms of disentanglement and downstream
performance [81] . From the perspective on correlation of ob-
servation, Träuble et al. [82] demonstrate that systematically
induced correlations in the dataset remain statistically de-
pendent and entangled in the latent representations, which
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can be resolved either through weak supervision during
training or by post-hoc correcting a pre-trained model with
a small number of labels.

3.6 Discussions
Dimension-wise v.s. Vector-wise Categorization. Ac-

cording to the structure of disentangled representations,
we can categorize DRL methods into two groups, i.e.,
dimension-wise and vector-wise methods. For dimension-
wise methods, generative factors are fine-grained and differ-
ent dimensions represent different types of semantic mean-
ings. For vector-wise methods, generative factors are coarse-
grained and different vectors represent different types of
semantic meanings. The comparisons of dimension-wise
and vector-wise methods are shown as Table 2 where most
approaches discussed in Section 3 belong to dimension-
wise methods, e.g., various VAE-based methods, InfoGAN
and IB-GAN. Dimension-wise methods are always exper-
imented on synthetic and simple datasets, while vector-
wise methods are always tested in real-world scenes such
as image translation.

4 METRICS

Many works [5], [6], [7], [9] qualitatively evaluate the
performance of disentanglement by inspecting the change
in reconstructions when traversing one variable in the latent
space. Qualitative observation is straightforward, but not
precise or mathematically rigorous. In order to promote the
research of learning disentangled representations, it is im-
portant to design reliable metrics which can quantitatively
measure disentanglement. We review and divide a series of
quantitative metrics into two categories: supervised metrics
and unsupervised metrics. As for a deeper understanding,
discussion and taxonomy for metrics, we refer interested
readers to Zaidi et al.’s work [85].

4.1 Supervised Metrics
Supervised metrics assume that we have access to the

ground truth generative factors.
Z-diff. Higgins et al. [6] propose a supervised disentan-

glement metric based on a low capacity linear classifier net-
work to measure both the independence and explainability.
They conduct inference on a number of image pairs that
are generated by fixing the value of one data generative
factor while randomly sampling all others. Taking a batch
of image pairs as input, the classifier is expected to identity
which factor is fixed and report the accuracy value as the
disentanglement metric score.

Z-min Variance. Kim et al. [7] point out that the afore-
mentioned method using linear network has several weak-
nesses, such as being sensitive to hyperparameters of the
linear classifier optimization. Most importantly, the metric
has a failure mode: giving 100% accuracy even when only
K − 1 factors out of K have been disentangled. The authors
propose a metric based on a majority-vote classifier with no
optimization hyperparameters. They also generate a num-
ber of images with one factor k fixed and all others varying
randomly. After obtaining representations with normaliza-
tion, they take the index of the dimension with the lowest

empirical variance and the label k as the input & output for
the majority-vote classifier. The accuracy of the classifier is
regarded as the disentanglement metric score.

Z-max Variance. Kim et al. [33] propose a metric which
is almost the same as Z-min Variance. The main difference
lays that they generate samples with one factor k varying
and all others fixed. Consequently, they choose the index
of the dimension with the highest empirical variance as the
input of majority-vote classifier. They claim that this metric
shows better consistency with qualitative assessment than
Z-min Variance.

Mutual Information Gap (MIG). Chen et al. [5] propose
a classifier-free information-theoretic metric named MIG.
The key insight of MIG is to evaluate the empirical mutual
information between a latent variable zj and a ground truth
factor k. For each factor k, MIG computes the gap between
the top two latent variables with the highest mutual infor-
mation. The average gap over all factors is used as the dis-
entanglement metric score. Higher MIG score means better
disentanglement performance because it indicates that each
generative factor is principally captured by only one latent
dimension.

SAP Score. Kumar et al. [35] propose a metric referred
as Separated Attribute Predictability (SAP) score. They con-
struct a score matrix S ∈ Rd×k and the (i, j)−th element
represents the linear regression or classification score of pre-
dicting j−th factor using only i−th latent variable distribu-
tion. Then for each column of the score matrix, they compute
the difference between the top two elements and take the
average of these differences as the SAP score. Higher SAP
score means better disentanglement performance because
it also indicates that each generative factor is principally
corresponding to only one latent dimension, just like MIG.

DCI. Eastwood et al. [86] design a framework which
evaluates disentangled models from three aspects, i.e., dis-
entanglement (D), completeness (C) and informativeness (I).
Specifically, disentanglement denotes the degree of captur-
ing at most one generative factor for each latent variable.
Completeness denotes the degree to which each generative
factor is captured by only one latent variable. Informative-
ness denotes the amount of information that latent variables
captures about the generative factors. It is worth noting that
the disentanglement and the completeness together quantify
the deviation between bijection and the actual mapping.

Modularity and Explicitness. Ridgeway et al. [87] eval-
uate disentanglement from two aspects, i.e., modularity
and explicitness. They claim a latent dimension is ideally
modular only when it has high mutual information with
only one factor and zero with all others. They obtain the
modularity score by computing the deviation between the
empirical case and the desired case. Explicitness focuses
on the coverage of latent representation with respect to
generative factors. Assuming factors have discrete values,
they fit a one-versus-rest logistic-regression factor classifier
and record the ROC area-under-the-curve (AUC). They then
take the mean of AUC values over all classes for all factors
as the final explicitness score.

UNIBOUND. Tokui et al. [88] propose UNIBOUND to
evaluate disentanglement by lower bounding the unique
information in the term of Partial Information Decompo-
sition (PID). PID decomposes the information between a
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TABLE 2
The comparisons of dimension-wise and vector-wise methods.

Methods Dimension of Each
Latent Factor Representative Works Semantic Alignment Applicability

Vector-
wise two or more

MAP-IVR [83], DRNET [84], DR-
GAN [65], DRANet [21], Lee et
al. [8], Liu et al. [22], Singh et al. [73]

each latent variable aligns
to one coarse-grained

semantic meaning
real scenes

Dimension-
wise one

VAE-based methods, InfoGAN [9],
IB-GAN [61], Zhu et al. [19],
InfoGAN-CR [62], PS-SC GAN [63],
Wei et al. [64], DNA-GAN [66]

each dimension aligns to
one fine-grained semantic

meaning

synthetic and simple
datasets

latent variable zl and a generative factor yk into three parts:
redundant information, unique information and comple-
mentary information. Let U(yk; zℓ\z\ℓ) denote the unique
information which is held by zℓ and not held by remaining
variables, they then lower bound this unique information
term. Similar to MIG, for each generative factor, the differ-
ence between the top two latent variables with largest lower
bound value is computed. The average value over all factors
is taken as the final score.

UC and GC. Reddy [56] propose Unconfoundedness
(UC) Metric and Counterfactual Generativeness (CG) Metric
from the causal perspective. As mentioned in Section 2, they
leverage an SCM to describe the data generation process.
UC metric evaluates the degree how the mapping from
Gi to ZI is unique and unconfounded with respect to
a set of confounders C . UC is defined as UC := 1 −
Ex∼pX

[
1
S

∑
I,J

|Zx
I∩Zx

J |
|Zx

I∪Zx
J |

]
. CG evaluates whether or not any

causal intervention on ZI influence the generated aspects
about Gi. This means only the intervention on ZI can
influence Gi for the generation process. CG is defined as

CG = EI [|ACE
Xcf

I

ZX
I
− ACE

Xcf
\I

ZX
\I
|], where ACEXdo(Z=α) =

E[X|do(Z = α)]− E[X|do(Z = α∗)].

4.2 Unsupervised Metrics

When we do not have access to the ground truth factors,
unsupervised metrics then become important and useful.

ISI. Do et al. [89] suggest three important properties
of disentanglement from the perspective of mutual infor-
mation, i.e., informativeness (I), separability (S) and inter-
pretability (I). Furthermore, they propose a series of metrics
to conduct the evaluation based on the three aspects re-
spectively. Specifically, informativeness denotes the mutual
information between original data x and latent variable
zi, formulated as I(x, zi) Separability means that any two
latent variables zi, zj do not share common information
about the data x, which denotes the ability to separate
two latent variables with respect to the data x, formulated
as I(x, zi, zj). Explainability means a one-one mapping (or
bijection) between latent variables zi and the data generative
factors yk, formulated as I(zi, yk) = H(zi) = H(yk). They
further propose specific methods of estimating these mutual
information terms, which are applicable to both supervised
and unsupervised scenarios.

5 DRL APPLICATIONS

In this section, we discuss the broad applications of DRL
for various downstream tasks.

5.1 Image

Images, as one of the most widely investigated visual
data type, can benefit a lot from DRL in terms of generation,
translation and explanation etc.

5.1.1 Generation
By taking advantages of DRL, independent factors in

generation objectives can be learned and aligned with latent
representation through disentanglement, hence capable of
controlling the generation process.

On the one hand, the original VAE [16] model learns
well-disentangled representations on image generation and
reconstruction tasks. Later approaches have achieved more
prominent results on image manipulation and intervene
through improvement in disentanglement and reconstruc-
tion. Representative models such as β-VAE [6], [34] and
FactorVAE [7] can better disentangle independent factors
of variation, enabling applicable manipulations of latent
variables in the image generation process. JointVAE [32]
pays attention to joint continuous and discrete features,
which acquires more generalized representations compared
with previous methods, thus broadening the scope of image
generation to a wider range of fields. CausalVAE [11] intro-
duces causal structure into disentanglement with weak su-
pervision, supporting the generation of images with causal
semantics and creation of counterfactual results.

On the other hand, GAN-based disentangled models
have also been widely applied in image generation tasks,
benefiting in the high fidelity of GAN. InfoGAN [9], as a
typical GAN based model, disentangles latent representa-
tion in an unsupervised manner to learn explainable repre-
sentations and generates images under manipulation, while
lacking of stability and sample diversity [6], [7]. Larsen et
al. [10] combine VAE and GAN as an unsupervised gener-
ative model by i) merging the decoder and the generator
into one, ii) using feature-wise similarity measures instead
of element-wise errors, which learns high-level visual at-
tributes for image generation and reconstruction in high
fidelity, iii) suggesting that unsupervised training produces
certain disentangled image representations. Zhu et al. [19]
utilize GAN architecture to disentangle 3D representations
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including shape, viewpoint, and texture, to synthesize nat-
ural images of objects. Wu et al. [90] analyze disentangle-
ment generation operation in StyleGAN [91], especially in
StyleSpace, to manipulate semantically meaningful attributes
in generation. Zeng et al. [92] propose a hybrid model DAE-
GAN, which utilizes a deforming autoencoder and condi-
tional generator to disentangle identity and pose represen-
tations from video frames, generating realistic face images
of particular poses in a self-supervised manner without
manual annotations.

Other works based on information theory also make
considerable contributions for long. For example, Gao et
al. propose InfoSwap [93], which disentangles identity-
relevant and identity-irrelevant information through opti-
mizing information bottleneck to generate more identity-
discriminative swapped faces.

5.1.2 Translation
In addition to generation, image translation is also a hot

topic in image processing and understanding. Disentangled
factors contribute to coherent and robust performance for
cross-domain scenarios, ultimately enhancing and expand-
ing the controllability and applicability of image translation.

Gonzalez et al. [20] present cross-domain disentangle-
ment, disentangling the internal representations into shared
and exclusive parts through bidirectional image transla-
tion based on GAN and cross-domain autoencoders with
only paired images as input. This design achieves satisfac-
tory performance on various tasks such as diverse sample
generation, cross-domain retrieval, domain-specific image
transfer and interpolation. Lee et al. [8] disentangle latent
representations into domain-invariant content space and
domain-specific attribute space by introducing a content
discriminator and cross-cycle consistency loss on GAN-
based framework, achieving diverse multimodal translation
without using pre-aligned image pairs for training. Later,
DRANet [21] is proposed to disentangle content and style
factors, and synthesize images by transferring visual at-
tributes for unsupervised multi-directional domain adap-
tion. Liu et al. [22] point out the lack of graduality for
existing image translation models in semantic interpolations
both within domains and across domains. As such, they
propose a new training protocol, which learns a smooth and
disentangled latent style space to perform gradual changes
and better preserve the content of the source image.

5.1.3 Others
The idea of DRL has also been employed in other

image-related fields and tasks. Sanchez et al. [94] disen-
tangle shared and exclusive representations in paired im-
ages through optimizing mutual information, which is well
applied to image classification and image retrieval tasks
without relying on image reconstruction or image genera-
tion. Hamaguchi et al. [95] propose a VAE-based network
to disentangle variant and invariant factors for rare event
detection on imbalanced datasets, requiring only pairs of
observations. Gidaris et al. [96] propose a self-supervised
semantic feature learning method through predicting ro-
tated images with ConvNet model to achieve comparable
performances with supervised methods. Inspired by Gidaris
et al.’s work, Feng et al. [97] later disentangle feature

representations relevant to semantic rotation and irrelevant
ones through joint training on image rotating prediction and
instance discrimination, which benefits in the generalization
ability in image classification, retrieval, segmentation and
other tasks. Ghandeharioun et al. [12] propose DISSECT,
which enforces the disentanglement of latent concepts by
encouraging the distinctness across different concepts and
the proximity within a same concept. They achieve multiple
counterfactual image explanations which can intervene the
output of model by changing disentangled concepts.

To summarize, representations learned through vari-
ous image representation models can always be structured
based on DRL strategy to separate variant events from
the inherent attributes. Therefore, as an appropriate learn-
ing strategy for image-related tasks, DRL particularly con-
tributes to significant improvement in image generation and
translation, facilitating more comprehensive and diverse
implementations for various image applications.

5.2 Video
Besides static images, DRL also promotes dynamic

videos analysis, including video prediction, video retrieval
and motion retargeting etc.

5.2.1 Video Prediction
Video prediction is a challenging yet interesting task of

predicting future frames given a set of contextual frames.
Denton et al. propose DRNET [84], an autoencoder-based
model factorizing each frame into an invariant part and a
varying component, which is able to coherently generate fu-
ture frames in videos. One of the major challenges for video
prediction lays in the high dimensional representation space
of visual data. To tackle this problem, Sreekar et al. propose
mutual information predictive auto-encoder (MIPAE) [98],
separating latent representations into time-invariant (con-
tent) and time-varying (pose) part, which avoids directly
predictions of high dimensional video frames. They use a
mutual information loss and a similarity loss to enforce
disentanglement, as well as employ LSTM to predict low
dimensional pose representations. Latent representations
of content and the predicted representations of pose are
then decoded to generate future frames. Hsieh et al. later
propose DDPAE [99], a framework which also disentangles
the content representations and the low-dimensional pose
representations. They utilize a pose prediction neural net-
work to predict future pose representations based on the
existing pose representations. Based on an inverse spatial
transformer parameterized by the predicted pose represen-
tations, the invariant content representations can also be
used to predict future frames.

5.2.2 Activity Image-to-Video Retrieval
Activity image-to-video retrieval (AIVR) aims to retrieve

videos containing a similar activity as the query image,
which focuses on both static appearance and dynamic mo-
tion, making the problem much more challenging. Consider-
ing the asymmetric relationship between images and videos,
Liu et al [83] propose a disentangled framework named
MAP-IVR to separate video representation into appearance
and motion, transforming image query to video query
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through the motion features extracted from the candidate
video. As such, the retrieval performance can be dramati-
cally increased through the direct matching between images
and videos.

5.2.3 Motion Retargeting
Motion retargeting aims at transferring the human

motion from a source video to a target video. Ma et
al. [100] point out that previous methods neglect the
subject-dependent motion features in the transferring pro-
cess, which leads to unnatural synthesis. To tackle this
problem, they propose to disentangle subject-dependent
motion features and subject-independent motion features,
generating target motion features through combination of
the source subject-independent features and the target
subject-dependent features. To achieve this purpose, they
design triplet loss for both subject-dependent and subject-
independent features to ensure the disentanglement.

5.2.4 Others
To deal with the large mode variations in the real-world

applications, Kim et al. [101] propose a DRL framework
for robust facial authentication, which disentangles identity
and mode (e.g., illumination, pose) features. They first use
two encoders to encode identity and mode, respectively.
To ensure disentanglement, they design an exclusion-based
strategy which encourages the two encoders to remove the
characteristics of the peer from their own representations.
Moreover, they design a reconstruction-based strategy to
reinforce the disentanglement, which uses a decoder to
reconstruct the original features by exchanging identity fea-
tures for an image-pair before re-disentangling the identity
and the mode features. Xing et al. [102] propose a disen-
tangled generative framework for video sequences, where
two independent latent vectors are employed to represent
appearance features and geometric features respectively.
They utilize an appearance generator taking the appearance
vector as input to generate the original image as well as a
geometric generator taking the geometric vector as input to
generate the coordinate residual. Taking the original image
and coordinate residual as input, a warping function is
designed to transform the original image to the target image.

5.3 Natural Language Processing
DRL has also been widely used in natural language pro-

cessing (NLP) tasks, such as text generation, style transfer,
semantic understanding etc.

5.3.1 Text Representation
The initial DRL applications in NLP aims at learning

disentangled text representations w.r.t. various criteria, pri-
marily by encoding different aspects of representations into
distinct spaces. He et al. [23] apply attention mechanism
to an unsupervised neural word embedding model so as
to discover meaningful and semantically coherent aspects
with strong identification, which improves disentanglement
among diverse aspects compared with previous approaches.
Bao et al. [24] generate sentences from disentangled syntac-
tic and semantic spaces through modeling syntactic infor-
mation in the latent space of VAE and regularizing syntactic

and semantic spaces via an adversarial reconstruction loss.
Cheng et al. [25] propose a disentangled learning frame-
work with partial supervision for NLP, to disentangle the
information between style and content of a given text by
optimizing the upper bound of mutual information. With
the semantic information being preserved, this framework
performs well on conditional text generation and text-style
transfer. Wu et al. [13] propose a disentangled learning
method that optimizes the robustness and generalization
ability of NLP models. Colombo et al. [103] propose to learn
disentangled representation for text data by minimizing the
mutual information between the latent representations of
the sentence contents and the attributes. They design a novel
variational upper bound based on the Kullback-Leibler and
the Renyi divergences to estimate the mutual information.

5.3.2 Style Transfer
Several works are motivated by employing DRL to dis-

entangle style information from text representations in the
practice of text style transfer tasks. Hu et al. [104] combine
VAE with an attribute discriminator to disentangle content
and attributes of the given textual data, for generating texts
with desired attributes of sentiment and tenses. John et
al. [105] incorporate auxiliary multi-task and adversarial
objectives based on VAE to disentangle the latent repre-
sentations of sentence, achieving high performance in non-
parallel text style transfer.

5.3.3 Others
There also exist specific tasks in NLP community where

DRL serves as an effective approach. Zou et al. [106] pro-
pose to address the fundamental task, i.e., text semantic
matching, by disentangling factual keywords from abstract
to learn the fundamental way of content matching under
different levels of granularity. Dougrez-Lewis et al. [107] dis-
entangle the latent topics of social media messages through
an adversarial learning setting, to achieve rumour veracity
classification. Zhu et al. [108] disentangle the content and
style in latent space by diluting sentence-level information
in style representations to generate stylistic conversational
responses. Other works [109], [110] also propose to exploit
the large pretrained language models (PLM) using DRL.
Zhang et al. [109] try to uncover disentangled represen-
tations from pretrained models such as BERT [111] by
identifying existing subnetworks within them, aiming to
extract representations that can factorize into distinct, com-
plementary properties of input. Zeng et al. [110] propose
task-guided disentangled tuning for PLMs, which enhances
the generalization of representations by disentangling task-
relevant signals from the entangled representations.

5.4 Multimodal Application
With the fast development of multimodal data, there

have also been an increasing number of research interests
on DRL for multimodal tasks, where DRL is primarily
conductive to the separation, alignment and generalization
of representations of different modalities.

Early works [112], [113] study the typical modal-level
disentanglement through encouraging independence be-
tween modality-specific and multimodal factors. Shi et
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al. [114] posit four criteria for multimodal generative models
and propose a multimodal VAE using a mixture-of-experts
layer, achieving disentanglement among modalities. Zhang
et al. [115] propose a disentangled sentiment representation
adversarial network (DiSRAN) to reduce the domain shift
of expressive styles for cross-domain sentiment analysis.
Recent works [116], [117], [118], [119], [120] tend to focus on
disentangling the rich information among multi modalities
and leveraging that to perform various downstream tasks.
Alaniz et al. [116] propose to use the semantic structure
of the text to disentangle the visual data, in order to learn
an unified representation between the text and image. The
PPE framework [117] realizes disentangled text-driven im-
age manipulation through exploiting the power of the pre-
trained vision-language model CLIP [121]. Similarly, Yu et
al. [118] achieve counterfactual image manipulation via dis-
entangling and leveraging the semantic in text embedding
of CLIP. Materzynska et al. [119] disentangle the spelling
capabilities from the visual concept processing of CLIP.

5.5 Recommendation

Application of DRL in recommendation tasks has also
drawn researchers’ attention substantially. Latent factors
behind user’s behaviors can be complicated and entangled
in recommender systems. Disentangled factors bring new
perspectives, reduce the complexity and improve the effi-
ciency and explainability of recommendation.

DRL in recommendation mostly aims at capturing user’s
interests of different aspects. Early works [26], [27], [29],
[122] focus on learning disentangled representations for
collaborative filtering. Specifically, Ma et al. [26] propose
MacridVAE to learn the user’s macro and micro preference
on items, which can be used for controllable recommen-
dation. Wang et al. [29], [122] decomposes the user-item
bipartite graph into several disentangled subgraphs, indi-
cating different kinds of user-item relations. Zhang et al. [27]
propose to learn users’ disentangled interests from both be-
havioral and content information. More recent works [123],
[124] also applied DRL in the sequential recommendations,
where the user’s future interest are matched with historical
behaviors in the disentangled intention space. Additionally,
some works [28], [125] also utilize auxiliary information to
help the disentangled recommendation. In particular, Wang
et al. [28] utilize both visual images and textual descriptions
to extract the user interests, providing recommendation
explainability from the visual and textual clues. Later they
incorporate both visual and categorical information to pro-
vide disentangled visual semantics which further boost both
recommendation explainability and accuracy [125].

5.6 Graph Representation Learning

Graph representation learning and reasoning methods
are being significantly demanded due to increasing appli-
cations on various domains dealing with graph structured
data, while real-world graph data always carry complex
relationships and interdependency between objects [126],
[127]. Consequently, research efforts have been devoted to
applying DRL to graphs, resulting in beneficial advances in
graph analysis tasks.

Ma et al. [30] point out the absence of attention for
complex entanglement of latent factors contemporaneously
and proposes DisenGCN, which learns disentangled node
representations through neighborhood routing mechanism it-
eratively segmenting the neighborhood according to the
underlying factors. Later, NED-VAE [128] is proposed to
be one unsupervised disentangled method that can dis-
entangle node and edge features from attributed graphs.
FactorGCN [129] is then proposed to decompose the input
graph into several factor graphs for graph-level disentan-
gled representations. After that, each of the factor graphs is
separately fed to the GNN model and then aggregated to-
gether for disentangled graph representations. Li et al. [130]
first propose to learn disentangled graph representations
with self-supervision. Given the input graph, the proposed
method DGCL identifies the latent factors of the input
graph and derives its factorized representations. Then it
conducts factor-wise contrastive learning to encourage the
factorized representations to independently reflect the ex-
pressive information from different latent factors. They fur-
ther propose IDGCL [131] that is able to learn disentangled
self-supervised graph representation via explicit enforcing
independence between the latent representations so as to
improve the quality of disentangled graph representations.
Li et al. [132] find that learning disentangled graph represen-
tations can improve the out-of-distribution (OOD) general-
ization ability of GNNs. The proposed OOD-GNN model
encourages the graph representation disentanglement by
eliminating the statistical dependence among all dimensions
of the output representation through iteratively optimizing
the sample graph weights and graph encoder.

6 DRL DESIGN FOR DIFFERENT TASKS

In this section, we discuss commonly adopted strategies
for DRL in practical applications, providing inspirations
on designing various DRL models for specific tasks. We
summarize two key aspects for designing a DRL model: i)
designing an appropriate representation structure according
to a specific task, and ii) designing corresponding loss
functions which force the representation to be disentangled
without losing task-specific information.

6.1 Design of Representation Structure
Two approaches for designing the representation struc-

ture include i) dimension-wise: use a whole vector represen-
tation z, which is fine-grained and ii) vector-wise: use two
or more independent vectors z1, z2... to represent different
parts of data features, which is coarse-grained. To guarantee
the disentanglement property, approach i) usually requires
that z is dimension-wise independent, while approach ii)
usually requires that zi is independent with zj where i ̸= j.

If we choose dimension-wise approach for our applica-
tion, typical models that we can select are the various VAE-
based and GAN-based methods which have been elaborated
in Section 3. In this case, we can use VAE or GAN as our
backbone and design extra loss functions to adapt to specific
tasks. We can also use other models such as InfoSwap [93]
which uses a multi-layer encoder to extract task-relevant
features and compresses the features layer by layer based on
information bottleneck to discard task-irrelevant features.
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TABLE 3
Representatives of disentangled representation learning applications

Papers Method Paradigm Application
[5], [6], [7], [16], [32], [33], [34], [35] VAE-based Unsupervised

Image generation
[9], [10], [19], [90] GAN-based
[36], [52], [81], [82] VAE-based

Supervised[65], [66] GAN-based
[11], [43] Causal-based
[8], [20], [21], [22], [92] GAN-based Unsupervised Image translation
[95] VAE-based Supervised Image classification, segmentation, etc.[94], [97] Others Unsupervised
[84], [99] VAE-based Unsupervised Video[83] Others Supervised
[23] Others Unsupervised Natural language processing[13], [25] Others Supervised
[112], [114], [116] VAE-based Unsupervised

Multimodal Application[113], [115] VAE-based
Supervised[118] GAN-based

[117], [119], [120] Others
[26], [28], [123], [124], [125] VAE-based Supervised Recommendation[27], [29], [122] Others
[128], [129], [130], [131] VAE-based Supervised Graph[29], [30], [132] Others

As for vector-wise approach, there are two ways of
obtaining multiple latent vectors: i) preset these vectors
or ii) employ different encoders which take original rep-
resentations as input to separate the original whole vector
into several different vectors. For example, DR-GAN [65]
explicitly sets a latent representation to represent pose and
uses an encoder to extract identity code from input images,
then leverages a supervised loss function to guarantee that
the pose code and the identity code can really capture the
pose and the identity information correspondingly. Liu et
al. [83] leverage two encoders, namely motion encoder and
appearance encoder, to respectively extract motion feature
and appearance feature by passing through the original
representation. Cheng et al. [133] utilize two encoders Ecls
and Evar to extract class-specific and class-irrelevant fea-
tures, respectively. DRNET [84] also uses two encoders to
extract the pose feature and content feature, respectively.
DRANet [21] employs only one encoder to extract content
feature and then obtains style feature by subtracting content
feature from original feature. Similar to DRANet, Wu et
al. [134] adopt one encoder to extract domain-invariant
features from an image feature map, followed by obtain-
ing domain-specific features through subtracting domain-
invariant features.

We can also obtain disentangled representations with
clustering-based methods by separating data into several
relatively independent parts, then extract feature from these
independent parts respectively, and finally fuse the features
in some way. For example, DGCF [29], as a model for
Collaborative Filtering, obtains independent representations
according to different user intentions before concatenating
them as the final disentangled representation.

We also have to point out that no matter which model
structure is chosen, appropriate loss functions must be de-
signed to guarantee that the representation is disentangled
without losing the information carried in data.

6.2 Design of Loss Function

Here, we will discuss the design of loss functions which
enforce disentanglement and informativeness according to
different model types, i.e., generative model and discrim-
inative model. Overall, we summarize loss functions as
L = λ1Lre + λ2Ldisen + λ3Ltask, where Lre denotes re-
construction loss, Ldisen denotes disentanglement loss, and
Ltask denotes specific task loss.

6.2.1 Generative model

The reconstruction loss, which is always essential for
generation tasks, ensures that the representation is seman-
tically meaningful. The disentanglement loss, on the other
hand, enforces the disentanglement of the representation.
Moreover, reconstruction loss can sometimes provide guid-
ance for disentanglement. The task loss is directly related
to task objective and also can provide guidance for disen-
tanglement, or in other words, the task loss also plays an
important role in ensuring that the disentangled features
learned can meet the expectations of objective task. Genera-
tive models usually have non-zero λ1 and λ2, while having
zero λ3.

For example, various VAE-based models mentioned in
Section 3 all have explicit reconstruction loss included in
ELBO and also utilize extra regularizers as disentanglement
loss. As for GAN-based methods, the adversarial loss can
be regarded as reconstruction loss as well, and the dis-
entanglement loss can be mutual information constraints
such as those adopted in InfoGAN [9] and IB-GAN [61].
Wu et al. [134] use an orthogonal loss to promote the in-
dependence between domain-invariant and domain-specific
features. Meanwhile, they also utilize a domain classifier
to prompt domain-specific features which capture much
more domain-specific information, and further use a de-
tection loss of domain adaptive object detection as task
loss. DRANet [21] adopts a L1 loss, a consistency loss and
an adversarial loss as reconstruction loss, in addition to
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TABLE 4
The summary of loss functions of several generative and discriminative models.

Methods reconstruction loss disentanglement loss task loss
VAE-based
Approaches L2 loss extra regularizers added to

ELBO -

InfoGAN [9] GAN loss maximizing λI(c;G(z, c)) -

DRANet [21] L1 loss, adversarial
loss, consistency loss perceptual loss -

DRNET [84] L2 loss similarity loss, adversarial loss -

InfoSwap [93] cycle-consistency
loss, adversarial loss information-compression loss -

Hamaguchi et
al. [95] VAE loss similarity loss similarity loss,

activation loss
MAP-IVR [83] L2 loss Lorth = cos (mv, av), Lclass -

Cheng et al. [133] L1 loss discriminative Loss classification loss

the usage of a perceptual loss to enhance disentanglement.
InfoSwap [93] resorts to an information compression loss
based on information bottleneck theory as the disentan-
glement loss, as well as using several reconstruction loss
functions such cycle-consistency loss. DRNET [84] adopts
a L2 loss as reconstruction loss and uses a similarity loss
together with an adversarial loss to ensure disentanglement.
Besides, several works also introduce extra supervisions to
enforce disentanglement without explicit disentanglement
loss function, such as DR-GAN [65] and DNA-GAN [66].
Table 4 summarizes designs of loss functions.

6.2.2 Discriminative model

In contrast to generative models, discriminative models
normally set λ1 to 0, because there will be no need for
reconstruction. Hence, we mainly consider the task loss and
the disentanglement loss which enforces the disentangle-
ment of representation for discriminative models. In other
words, a discriminative model typically utilizes DRL as an
infrastructure to achieve better performance for target task.

Discriminative tasks usually do not restrict any specific
backbone models, they adopt the latent disentangled repre-
sentation encoded by appropriate models such as VAE or
GAN, based on which the auxiliary loss required by the
target task such as image classification, recommendation,
neural architecture search etc., will be added. For example,
Hamaguchi et al. [95] add similarity loss and activation
loss on the basis of using two pairs of VAEs to encode
image pairs. This strategy aims at making common features
encode invariant factors in an input image pair and avoiding
a trivial solution, which encourages the model to learn
common features and specific features of images and thus
achieve the goal of rare event detection. In terms of text style
transfer, John et al. [105] divide the latent representation
of text into two parts: the style space and content space,
as well as additionally design a systematic set of auxiliary
losses to encourage disentanglement. Specifically, multi-task
objectives are utilized so that the desired information is con-
strained to be encoded in latent space while the adversarial
objectives are employed to minimize the predictability of
irrelevant information. Cheng et al. [133] use a gradient
reverse layer and a class discriminative loss to minimize
the class-specific information captured by class-irrelevant
encoder. Moreover, the reconstruction loss and classification

loss can ensure that the class-specific encoder is capable
of capturing the class-specific information. MAP-IVR [83]
employs a cosine similarity loss to enforce orthogonality
between the motion and appearance feature, in addition to
the L2 reconstruction loss which ensures the motion feature
and the appearance feature capturing the dynamic and static
information respectively. MAP-IVR has no task loss since it
uses the trained motion and appearance features to tackle
the downstream task, i.e., activity image-to-video retrieval.

7 FUTURE DIRECTIONS

Last but not least, we conclude this paper by pointing
out some potential interesting directions that deserve fu-
ture investigations. i) Diverse scenes. Existing works on
theoretic DRL methodology and benchmark mostly focus
on image generation tasks over simple synthetic datasets.
It will be interesting to conduct more analysis on DRL in
diverse scenes over more complicated datasets. ii) Diverse
learning paradigms. Existing DRL methods mostly start
from VAE-based and GAN-based models. It will be promis-
ing to conduct more research on other potential models,
e.g., diffusion model, which may open new ways for DRL.
iii) Explainability and generalization. Although DRL has
achieved several success in explainability and generaliza-
tion, future works should continue focusing on these two
advantages of DRL, e.g., exploring generalization in few-
shot or zero-shot learning, and demonstrating explainability
in more types of practical tasks.
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